The formation of groups for regional flood frequency analysis
نویسندگان
چکیده
A new technique is developed for identifying groups for regional flood frequency analysis. The technique uses a clustering algorithm as a starting point for partitioning the collection of catchments. The groups formed using the clustering algorithm are subsequently revised to improve the regional characteristics based on three requirements that are defined for effective groups. The result is overlapping groups that can be used to estimate extreme flow quantiles for gauged or ungauged catchments. The technique is applied to a collection of catchments from India and the results indicate that regions with the desired characteristics can be identified using the technique. The use of the groups for estimating extreme flow quantiles is demonstrated for three example sites. La formation de groupes pour l'estimation régionale de la fréquence des crues Résumé Nous avons développé une nouvelle technique afin de déterminer des groupes de bassins pour estimer la fréquence des crues à l'échelle régionale. Le point de départ de cette technique est un algorithme d'agrégation permettant de réaliser une partition de l'ensemble des bassins considérés. Afin d'améliorer la régionalisation les groupes ainsi formés sont ensuite modifiés en s'appuyant sur trois exigences définies de telle sorte que les groupes soient utilisables avec efficacité. Le résultat consiste en groupes pouvant se recouvrir qui peuvent être utilisés pour estimer les quantiles de crues extrêmes de stations jaugées ou non. Cette technique a été appliquée à un ensemble de bassins versants de l'Inde et les résultats montrent qu'elle permet d'estimer les caractéristiques désirées. Trois sites de démonstration ont fait l'objet de l'utilisation des groupes pour l'estimation des quantiles des crues extrêmes.
منابع مشابه
Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملکاربرد تئوری گشتاورهای خطی در تحلیل تناوب سیل حوزههای آبخیز مرکزی ایران
Numerous methods are used in the investigation of floods in catchments such as regional flood frequency analysis. Regional flood frequency analysis relies on physical, climatic and ecological characteristics of catchments and applies statistical methods to study flow records. Hosking and Wallis developed Probability Weighted Moments and presented L-moments statistics as a new tool for flood fre...
متن کاملکاربرد تئوری گشتاورهای خطی در تحلیل تناوب سیل حوزههای آبخیز مرکزی ایران
Numerous methods are used in the investigation of floods in catchments such as regional flood frequency analysis. Regional flood frequency analysis relies on physical, climatic and ecological characteristics of catchments and applies statistical methods to study flow records. Hosking and Wallis developed Probability Weighted Moments and presented L-moments statistics as a new tool for flood fre...
متن کاملAssessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed)
Flood discharge estimation with different return periods is one of important factors for water structures design and installation. On the other hand, a lot of rivers existing in Iran watersheds have no complete and accurate hydrometric data. In these cases, one of the suitable solutions to estimate peak discharges with different return periods is the regional flood analysis. In this research, 5...
متن کاملمنطقه بندی حوزه های آبخیز با به کارگیری نوعی از شبکه های عصبی مصنوعی به منظور تحلیل فراوانی منطقه ای سیلاب
Self-Organizing Feature Maps (SOFM) are a variety of artificial neural networks that their applications in the areas of pattern recognition and data clustering makes them noticeable tools to perform regional flood frequency analysis (RFFA). In this study, ability of Self-Organizing Feature Maps for regionalization of Sefidrood watershed in order to perform regional flood frequency analysis usin...
متن کاملHybrid Regional Flood Analysis in the Namak Lake Watershed
Regional Flood Frequency Analysis (RFFA) is an efficient method in flood discharge estimation in ungauged watersheds or with short-term statistics. The purpose of the present study is to evaluate the hybrid method in RFFA and maximum flood discharge estimation in the Namak Lake watershed, Iran. For this purpose, 16 hydrometric stations were selected. The selected hydrometric stations were then ...
متن کامل